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Abstract. Soliton-like solutions of the two-dimensional Burgers equation are obtained. Some
new solutions from soliton-like solutions are also presented.

1. Introduction

Current interest in the area of the nonlinear evolution equation focuses on the need to find
its soliton-like solutions, because the waveforms can change in different mechanisms and it
usually has travelling wave solutions. In the present paper, we shall study the soliton-like
solutions of the two-dimensional Burgers equation [1]

(ut + uux − uxx)x + uyy = 0 (1.1)

which describes weakly nonlinear two-dimensional shocks in dissipative media. The shocks
described by equation (1.1) are weakly two-dimensional in the sense that the wave length of
variation in they direction is much larger than that in thex direction. Equation (1.1) can be
referred to as the Zabolotskaya–Khoklov equation in nonlinear acoustics [2–5] and its Painlevé
property and some exact solutions were given in [6].

In this paper we shall present the soliton-like solutions of equation (1.1). As special
cases, we also obtain five types of exact solutions including a travelling wave solution and a
steady-state solution etc.

2. Exact solutions

Recently, a direct method for finding soliton-like solutions [7–10] has been applied successfully
to many nonlinear evolution equations. By using this direct method one can get not only the
travelling wave solutions but also the non-travelling solitonic solutions.

We assume that equation (1.1) possesses solutions of the form

u(x, y, t) = A∂mx ∂nyw[z(x, y, t)] + B (2.1)

where the constantsA,B and the integersm, n are to be determined. Using leading-order
analysis [11], we can easily find thatm = 1 andn = 0. Thus the solution can be chosen as

u(x, y, t) = A∂xw[z(x, y, t)] + B. (2.2)
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By substituting (2.2) into (1.1) and with symbolic computation, we find that

w(3)z2
yzx +w′′zyyzx +w(3)zt z

2
x +Bw(3)z3

x +A(w′′)2z4
x +Aw′w(3)z4

x − w(4)z4
x + 2w′′zxzxt

+2w′′zyzxy +w′zxyy +w′′ztzxx + 3Bw′′zxzxx + 5Aw′w′′z2
xzxx − 6w(3)z2

xzxx

+A(w′)2z2
xx − 3w′′z2

xx +w′zxxt +Bw′zxxx +A(w′)2zxzxxx
−4w′′zxzxxx − w′zxxxx = 0. (2.3)

Equating the coefficient of the highest power ofzx , i.e.z4
x terms, to zero, we obtain an ordinary

differential equation

A(w′w′′)′ − w(4) = 0 (2.4)

which has a solution

w(z) = − 2

A
ln(z). (2.5)

Now we proceed to find the solution of equation (1.1) of the form given by (2.2) and (2.5)
wherez(x, y, t) is expressed by following thex-linear form

z(x, y, t) = P(y, t) + exp[Q(y, t)x +R(y, t)] (2.6)

whereP(y, t),Q(y, t) andR(y, t) are differentiable functions with respect toy andt . After
the substitution of equations (2.2), (2.5) and (2.6) with symbolic computation, we find that
equation (1.1) becomes the equation

−(eQx+R)2Qyy + eQx+R[BPQ3− PQ4 −Q2Pt − 2PQQt + xPQ2Qt + PQ2Rt + 2PyQy

−2xQPyQy − 2xPQ2
y + x2PQQ2

y − 2QPyRy − 2PQyRy + 2xPQQyRy

+PQR2
y +QPyy − 2PQyy − xPQQyy − PQRyy ]

+[−BP 2Q3 + P 2Q4 + PQ2Pt − 2P 2QQt − xP 2Q2Qt − P 2Q2Rt

−2QP 2
y + 2PPyQy + 2xPQPyQy − 2xP 2Q2

y − x2P 2QQ2
y + 2PQPyRy

−2P 2QyRy − 2xP 2QQyRy − P 2QR2
y + PQPyy − P 2Qyy

−xP 2QQyy − P 2QRyy ] = 0. (2.7)

Setting the coefficients of(eQx+R)2, eQx+Rx2, eQx+Rx, eQx+R, x2, x andx0 to zero, we obtain
a set of constraints
Qyy = Qy = Qt = 0
BPQ2 − PQ3−QPt + PQRt − 2PyRy + PR2

y + Pyy − PRyy = 0

BP 2Q2−P 2Q3−PQPt+P 2QRt + 2P 2
y − 2PPyRy + P 2R2

y − PPyy + P 2Ryy = 0.
(2.8)

Hence under (2.8), the soliton-like solutions for equation (1.1) are obtained so that

u(x, y, t) = A∂xw[z(x, y, t)] + B = − 2Q(y, t)eQ(y,t)x+R(y,t)

P (y, t) + eQ(y,t)x+R(y,t)
+B

= −Q(y, t)
[
1 + tanh

Q(y, t)x +R(y, t)− lnP(y, t)

2

]
+B. (2.9)

It follows from (2.8) thatQ(y, t) = k, k = constant6= 0, and now (2.8) becomes{
k2BP − k3P − kPt + kPRt − 2PyRy + PR2

y + Pyy − PRyy = 0

k2BP 2 − k3P 2 − kPPt + kP 2Rt + 2P 2
y − 2PPyRy + P 2R2

y − PPyy + P 2Ryy = 0.
(2.10)

Under conditions (2.10), the formalism of the new soliton-like solutions of equation (1.1)
becomes

u(x, y, t) = −k
[
1 + tanh

kx +R(y, t)− lnP(y, t)

2

]
+B. (2.11)

Thus we are able to construct new solutions of equation (1.1) by substituting the solutions of
(2.10) into (2.11). As examples, we now consider the following three cases.
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Case 1. WhenP(y, t) = 1 it is easy to deduce from (2.10) that{
Ryy +R2

y + kRt +Bk2 − k3 = 0

Ryy − R2
y − kRt − Bk2 + k3 = 0.

(2.12)

In this case, we can obtain three types of solutions as follows:

(1) Solitary waves.Let us assume thatR(y, t) = ay +bt +c, with arbitrary constantsa, b and
c. Substituting this into (2.10) we getB = k− (b/k)− (a/k)2; therefore, the solution of
(1.1) is of the form

u(x, y, t) = −b
k
−
(a
k

)2
− k tanh

kx + ay + bt + c

2
. (2.13)

Thus, solitary waves are nothing but a special case of the solution (2.11).
(2) Solutions independent of y.By settingR(y, t) = a(t), we obtain from (2.12) that

a′(t)+Bk− k2 = 0, which has a solutiona(t) = k(k−B)t +c1. Thus, the corresponding
solution of (1.1) is of the form

u(x, y, t) = −k
[
1 + tanh

kx + k(k − B)t + c1

2

]
+B (2.14)

wherek, B andc1 are arbitrary constants.
(3) A general solution. ChoosingR(y, t) = k2t + b(y), equation (2.12) reduces to the

equationb′′(y) + (b′(y))2 + Bk2 = 0, which has a general solution of the form
b(y) = ln[cos

√
Bk(y − c1)] + c2, with arbitrary constantsc1, c2, k andB. So the

solution of (1.1) is

u(x, y, t) = −k
[

1 + tanh
kx + k2t + ln[cos

√
Bk(y − c1)] + c2

2

]
+B. (2.15)

Case 2. WhenP(y, t) = t , equation (2.10) becomes{
(Ryy +R2

y + kRt)t + (Bk2 − k3)t − k = 0

(Ryy − R2
y − kRt)t − (Bk2 − k3)t + k = 0.

(2.16)

SubstitutingR(y, t) = ln(y)+my with an arbitrary constantm into equation (2.16), we obtain
B = k − (m/k)2. This gives thesteady-state solutionof (1.1) as follows:

u(x, y, t) = −
(m
k

)2
− k tanh

kx +my

2
. (2.17)

Case 3. WhenP(y, t) = y, equation (2.10) reduces to the equations{
y2(Ryy +R2

y + kRt)− 2yRy + y2(Bk2 − k3) + 2= 0

y(Ryy − R2
y − kRt) + 2Ry − y(Bk2 − k3) = 0.

(2.18)

ChoosingR(y, t) = k(k − B)t + a(y), equation (2.18) is changed to the equation

y2[a′′(y) + (a′(y))2] − 2ya′(y) + 2= 0

which has solutiona(y) = ln(y2 − c1y) + c2, wherec1 andc2 are arbitrary constants. So the
solution of (1.1) is obtained as

u(x, y, t) = −k
[
1 + tanh

kx + k(k − B)t + ln(y − c1) + c2

2

]
+B (2.19)

wherek andB are arbitrary constants.
If we setR(y, t) = b(t) in case 2 andR(y, t) = a(y) in case 3, then we can also obtain

the travelling wave solution and the steady-state solution, respectively.
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